Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 146
Filtrar
1.
BMC Microbiol ; 24(1): 115, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38575867

RESUMO

Despite repeated spillover transmission and their potential to cause significant morbidity and mortality in human hosts, the New World mammarenaviruses remain largely understudied. These viruses are endemic to South America, with animal reservoir hosts covering large geographic areas and whose transmission ecology and spillover potential are driven in part by land use change and agriculture that put humans in regular contact with zoonotic hosts.We compiled published studies about Guanarito virus, Junin virus, Machupo virus, Chapare virus, Sabia virus, and Lymphocytic Choriomeningitis virus to review the state of knowledge about the viral hemorrhagic fevers caused by New World mammarenaviruses. We summarize what is known about rodent reservoirs, the conditions of spillover transmission for each of these pathogens, and the characteristics of human populations at greatest risk for hemorrhagic fever diseases. We also review the implications of repeated outbreaks and biosecurity concerns where these diseases are endemic, and steps that countries can take to strengthen surveillance and increase capacity of local healthcare systems. While there are unique risks posed by each of these six viruses, their ecological and epidemiological similarities suggest common steps to mitigate spillover transmission and better contain future outbreaks.


Assuntos
Arenaviridae , Arenavirus do Novo Mundo , Animais , Humanos , Arenaviridae/genética , América do Sul
2.
Arch Microbiol ; 206(5): 217, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38619666

RESUMO

The rodent-borne Arenavirus in humans has led to the emergence of regional endemic situations and has deeply emerged into pandemic-causing viruses. Arenavirus have a bisegmented ambisense RNA that produces four proteins: glycoprotein, nucleocapsid, RdRp and Z protein. The peptide-based vaccine targets the glycoprotein of the virus encountered by the immune system. Screening of B-Cell and T-Cell epitopes was done based on their immunological properties like antigenicity, allergenicity, toxicity and anti-inflammatory properties were performed. Selected epitopes were then clustered and epitopes were stitched using linker sequences. The immunological and physico-chemical properties of the vaccine construct was checked and modelled structure was validated by a 2-step MD simulation. The thermostability of the vaccine was checked followed by the immune simulation to test the immunogenicity of the vaccine upon introduction into the body over the course of the next 100 days and codon optimization was performed. Finally a 443 amino acid long peptide vaccine was designed which could provide protection against several members of the mammarenavirus family in a variety of population worldwide as denoted by the epitope conservancy and population coverage analysis. This study of designing a peptide vaccine targeting the glycoprotein of mammarenavirues may help develop novel therapeutics in near future.


Assuntos
Arenaviridae , Vacinas , Humanos , Arenaviridae/genética , Vacinologia , Peptídeos , Epitopos/genética , Glicoproteínas
3.
Viruses ; 16(3)2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38543706

RESUMO

Following an Argentine Hemorrhagic Fever (AHF) outbreak in the early 1990s, a rodent survey for Junín virus, a New World Clade B arenavirus, in endemic areas of Argentina was conducted. Since 1990, INEVH has been developing eco-epidemiological surveillance of rodents, inside and outside the Argentine Hemorrhagic Fever endemic area. Samples from rodents captured between 1993 and 2019 that were positive for Arenavirus infection underwent Sanger and unbiased, Illumina-based high-throughput sequencing, which yielded 5 complete and 88 partial Mammarenaviruses genomes. Previously, 11 genomes representing four species of New World arenavirus Clade C existed in public records. This work has generated 13 novel genomes, expanding the New World arenavirus Clade C to 24 total genomes. Additionally, two genomes exhibit sufficient genetic diversity to be considered a new species, as per ICTV guidelines (proposed name Mammarenavirus vellosense). The 13 novel genomes exhibited reassortment between the small and large segments in New World Mammarenaviruses. This work demonstrates that Clade C Mammarenavirus infections circulate broadly among Necromys species in the Argentine Hemorrhagic Fever endemic area; however, the risk for Clade C Mammarenavirus human infection is currently unknown.


Assuntos
Arenaviridae , Arenavirus , Arenavirus do Novo Mundo , Febre Hemorrágica Americana , Vírus Junin , Animais , Humanos , Arenaviridae/genética , Roedores , Febre Hemorrágica Americana/epidemiologia , Argentina/epidemiologia , Arenavirus do Novo Mundo/genética , Vírus Junin/genética , Arenavirus/genética
4.
J Virol ; 98(2): e0196423, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38289100

RESUMO

Guanarito virus (GTOV) is the causative agent of Venezuelan hemorrhagic fever. GTOV belongs to the genus Mammarenavirus, family Arenaviridae and has been classified as a Category A bioterrorism agent by the United States Centers for Disease Control and Prevention. Despite being a high-priority agent, vaccines and drugs against Venezuelan hemorrhagic fever are not available. GTOV S-26764, isolated from a non-fatal human case, produces an unclear cytopathic effect (CPE) in Vero cells, posing a significant obstacle to research and countermeasure development efforts. Vero cell-adapted GTOV S-26764 generated in this study produced clear CPE and demonstrated rapid growth and high yield in Vero cells compared to the original GTOV S-26764. We developed a reverse genetics system for GTOV to study amino acid changes acquired through Vero cell adaptation and leading to virus phenotype changes. The results demonstrated that E1497K in the L protein was responsible for the production of clear plaques as well as enhanced viral RNA replication and transcription efficiency. Vero cell-adapted GTOV S-26764, capable of generating CPE, will allow researchers to easily perform neutralization assays and anti-drug screening against GTOV. Moreover, the developed reverse genetics system will accelerate vaccine and antiviral drug development.IMPORTANCEGuanarito virus (GTOV) is a rodent-borne virus. GTOV causes fever, prostration, headache, arthralgia, cough, sore throat, nausea, vomiting, diarrhea, epistaxis, bleeding gums, menorrhagia, and melena in humans. The lethality rate is 23.1% or higher. Vero cell-adapted GTOV S-26764 shows a clear cytopathic effect (CPE), whereas the parental virus shows unclear CPE in Vero cells. We generated a reverse genetics system to rescue recombinant GTOVs and found that E1497K in the L protein was responsible for the formation of clear plaques as well as enhanced viral RNA replication and transcription efficiency. This reverse genetic system will accelerate vaccine and antiviral drug developments, and the findings of this study contribute to the understanding of the function of GTOV L as an RNA polymerase.


Assuntos
Arenaviridae , Genética Reversa , Animais , Feminino , Humanos , Arenaviridae/genética , Infecções por Arenaviridae/virologia , Arenavirus do Novo Mundo/genética , Chlorocebus aethiops , Febres Hemorrágicas Virais/virologia , Fenótipo , Genética Reversa/métodos , Vacinas , Células Vero
5.
Methods Mol Biol ; 2733: 115-131, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38064030

RESUMO

Several mammarenaviruses cause hemorrhagic fever (HF) disease in humans and pose a significant public health problem in their endemic regions. The Old World (OW) mammarenavirus Lassa virus (LASV) is estimated to infect several hundred thousand people yearly in West Africa, resulting in high numbers of Lassa fever (LF) cases, a disease associated with high morbidity and mortality. No licensed vaccines are available to combat LASV infection, and anti-LASV drug therapy is limited to the off-label use of ribavirin whose efficacy remains controversial. The development of reverse genetics approaches has provided investigators with a powerful approach for the investigation of the molecular, cell biology and pathogenesis of mammarenaviruses. The use of cell-based minigenome systems has allowed examining the cis- and trans-acting factors involved in viral genome replication and gene transcription, assembly, and budding, which has facilitated the identification of several anti-mammarenavirus candidate drugs. Likewise, it is possible now to rescue infectious recombinant mammarenaviruses from cloned cDNAs containing predetermined mutations in their genomes to investigate virus-host interactions and mechanisms of viral pathogenesis. Reverse genetics have also allowed the generation of mammarenaviruses expressing foreign genes to facilitate virus detection, to identify antiviral drugs, and to generate live-attenuated vaccine (LAV) candidates. Likewise, reverse genetics techniques have allowed the generation of single-cycle infectious, reporter-expressing mammarenaviruses to study some aspects of the biology of HF-causing human mammarenavirus without the need of high security biocontainment laboratories. In this chapter, we describe the experimental procedures to generate recombinant (r)LASV using state-of-the-art plasmid-based reverse genetics.


Assuntos
Arenaviridae , Febres Hemorrágicas Virais , Febre Lassa , Humanos , Vírus Lassa/genética , Genética Reversa/métodos , Arenaviridae/genética , Plasmídeos/genética
6.
Viruses ; 15(12)2023 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-38140554

RESUMO

Reptarenaviruses cause Boid Inclusion Body Disease (BIBD), a fatal disease of boid snakes with an economic and ecological impact, as it affects both captive and wild constrictor snakes. The clinical picture of BIBD is highly variable but often only limited. Intracytoplasmic inclusion bodies (IB), which develop in most cell types including blood cells, are the pathognomonic hallmark of BIBD; their detection represents the diagnostic gold standard of the disease. However, IBs are not consistently present in clinically healthy reptarenavirus carriers, which can, if undetected, lead to and maintain the spread of the disease within and between snake populations. Sensitive viral detection tools are required for screening and control purposes; however, the genetic diversity of reptarenaviruses hampers the reverse transcription (RT) PCR-based diagnostics. Here, we describe a multiplex RT-PCR approach for the molecular diagnosis of reptarenavirus infection in blood samples. The method allows the detection of a wide range of reptarenaviruses with the detection limit reaching 40 copies per microliter of blood. Using 245 blood samples with a reference RT-PCR result, we show that the technique performs as well as the segment-specific RT-PCRs in our earlier studies. It can identify virus carriers and serve to limit reptarenavirus spreading in captive snake collections.


Assuntos
Infecções por Arenaviridae , Arenaviridae , Boidae , Animais , Arenaviridae/genética , Transcrição Reversa , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Boidae/genética
7.
Virol J ; 20(1): 265, 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37968659

RESUMO

The global decline in biodiversity is a matter of great concern for members of the class Reptilia. Reptarenaviruses infect snakes, and have been linked to various clinical conditions, such as Boid Inclusion Body Disease (BIBD) in snakes belonging to the families Boidae and Pythonidae. However, there is a scarcity of information regarding reptarenaviruses found in snakes in both the United States and globally. This study aimed to contribute to the understanding of reptarenavirus diversity by molecularly characterizing a reptarenavirus detected in a Colombian Red-Tailed Boa (Boa constrictor imperator). Using a metagenomics approach, we successfully identified, and de novo assembled the whole genomic sequences of a reptarenavirus in a Colombian Red-Tailed Boa manifesting clinically relevant symptoms consistent with BIBD. The analysis showed that the Colombian Red-Tailed Boa in this study carried the University of Giessen virus (UGV-1) S or S6 (UGV/S6) segment and L genotype 7. The prevalence of the UGV/S6 genotype, in line with prior research findings, implies that this genotype may possess specific advantageous characteristics or adaptations that give it a competitive edge over other genotypes in the host population. This research underscores the importance of monitoring and characterizing viral pathogens in captive and wild snake populations. Knowledge of such viruses is crucial for the development of effective diagnostic methods, potential intervention strategies, and the conservation of vulnerable reptilian species. Additionally, our study provides valuable insights for future studies focusing on the evolutionary history, molecular epidemiology, and biological properties of reptarenaviruses in boas and other snake species.


Assuntos
Arenaviridae , Boidae , Humanos , Animais , Arenaviridae/genética , Colômbia , Evolução Biológica , Genótipo
8.
J Gen Virol ; 104(9)2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37698490

RESUMO

Arenaviridae is a family for ambisense RNA viruses with genomes of about 10.5 kb that infect mammals, snakes, and fish. The arenavirid genome consists of two or three single-stranded RNA segments and encodes a nucleoprotein (NP), a glycoprotein (GP) and a large (L) protein containing RNA-directed RNA polymerase (RdRP) domains; some arenavirids encode a zinc-binding protein (Z). This is a summary of the International Committee on Taxonomy of Viruses (ICTV) report on the family Arenaviridae, which is available at www.ictv.global/report/arenaviridae.


Assuntos
Arenaviridae , Animais , Arenaviridae/genética , Nucleoproteínas/genética , RNA , RNA Polimerase Dependente de RNA , Mamíferos
9.
Virulence ; 14(1): 2231392, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37394841

RESUMO

Mammarenaviruses, a genus of the family Arenaviridae, are capable of infecting mammals and are primarily found in rodent reservoirs worldwide. Mammarenaviruses can be transmitted to humans through contact with infected rodents, and though infection is often asymptomatic, some members of this genus can cause viral haemorrhagic fever which has mortality rates ranging from 1% to 50%. These viruses are typically restricted geographically, based on the geographical range of their host reservoirs. Lymphocytic choriomeningitis virus (LCMV) was previously thought to be the only mammarenavirus found across the globe. However, recent discoveries of two novel human mammarenaviruses, Wenzhou Virus (WENV) and Plateau Pika Virus (PPV), in Asia and Southeast Asia show that mammarenaviruses are more widespread than previously thought. This editorial article aims to raise awareness about these emerging viruses, their genetic and ecological diversities, and clinical significance, and to encourage further study of these emerging viruses.


Assuntos
Arenaviridae , Animais , Humanos , Arenaviridae/genética , Vírus da Coriomeningite Linfocítica , Sudeste Asiático/epidemiologia , Ásia , Mamíferos
10.
Arch Virol ; 168(7): 174, 2023 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-37291370

RESUMO

In this study, a novel mammarenavirus (family Arenaviridae) was identified in a hedgehog (family Erinaceidae) in Hungary and genetically characterized. Mecsek Mountains virus (MEMV, OP191655, OP191656) was detected in nine (45%) out of 20 faecal specimens collected from a Northern white-breasted hedgehog (Erinaceus roumanicus). The L-segment proteins (RdRp and Z) and S-segment proteins (NP and GPC) of MEMV had 67.5%/70% and 74.6%/65.6% amino acid sequence identity, respectively, to the corresponding proteins of Alxa virus (species Mammarenavirus alashanense) identified recently in an anal swab from a three-toed jerboa (Dipus sagitta) in China. MEMV is the second known arenavirus endemic in Europe.


Assuntos
Arenaviridae , Ouriços , Animais , Arenaviridae/genética , Europa (Continente) , Hungria/epidemiologia , China
11.
Microbiol Spectr ; 11(3): e0506522, 2023 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-37212675

RESUMO

Reptarenaviruses cause boid inclusion body disease (BIBD), a fatal disease particularly impacting captive boa constrictor collections. The development of cytoplasmic inclusion bodies (IBs) comprising reptarenavirus nucleoprotein (NP) in many cell types of affected snakes is characteristic of BIBD. However, snakes can harbor reptarenaviruses without showing IBs, hence representing carriers and a potential source of transmission. The RNA genome of reptarenaviruses comprises a small (S) and a large (L) segment, and the snakes with BIBD commonly carry a swarm of reptarenavirus segments. To design sensitive and reliable tools for the diagnosis of reptarenavirus infection in snake colonies, we used metatranscriptomics to determine the reptarenavirus segments present in a large boa constrictor breeding colony. The analysis identified one reptarenavirus S segment and three L segments in the colony. The sequence data served to design real-time reverse transcription-PCR (RT-PCR) targeting the found S segment. This allowed us to identify all infected animals and to quantify the S segment RNA levels, which we found to correlate with the presence of IBs. We further found a positive correlation between the number of L segments and the S segment RNA level, which could suggest that L segment excess also contributes to the IB formation. Information on cohousing of the snakes showed a clear association of reptarenavirus infection with cohousing in general and cohousing with infected animals. Information on breeding and offspring confirmed that vertical transmission occurred. Furthermore, our data suggest that some animals might be able to clear the infection or at least exhibit transient or intermittent viremia. IMPORTANCE Boid inclusion body disease (BIBD) is caused by reptarenavirus infection, and while reptarenavirus nucleoprotein is the main component of the inclusion bodies (IBs) characteristic of BIBD, not all reptarenavirus-infected snakes demonstrate IBs in their cells. Identification of infected individuals is critical for controlling the spread of the disease; however, the genetic divergence of reptarenaviruses complicates reverse transcription-PCR (RT-PCR)-based diagnostics. Here, we tested a next-generation-sequencing-based approach to establish a tailored "colony-specific" set of diagnostic tools for the detection of reptarenavirus small (S) and large (L) genome segments. With this approach, we could demonstrate that an S-segment-specific RT-PCR is highly effective in identifying the infected individuals. We further found the S segment RNA level to positively correlate with the presence of IBs and the number of L segments, which could direct future studies to identify the BIBD pathogenetic mechanisms.


Assuntos
Arenaviridae , Boidae , Corpos de Inclusão , Animais , Arenaviridae/genética , Boidae/genética , Nucleoproteínas/genética , RNA Viral/genética
12.
Emerg Microbes Infect ; 12(1): e2192816, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36939609

RESUMO

Emerging zoonoses of wildlife origin caused by previously unknown agents are one of the most important challenges for human health. The Qinghai-Tibet Plateau represents a unique ecological niche with diverse wildlife that harbours several human pathogens and numerous previously uncharacterized pathogens. In this study, we identified and characterized a novel arenavirus (namely, plateau pika virus, PPV) from plateau pikas (Ochotona curzoniae) on the Qinghai-Tibet Plateau by virome analysis. Isolated PPV strains could replicate in several mammalian cells. We further investigated PPV pathogenesis using animal models. PPV administered via an intraventricular route caused trembling and sudden death in IFNαßR-/- mice, and pathological inflammatory lesions in brain tissue were observed. According to a retrospective serological survey in the geographical region where PPV was isolated, PPV-specific IgG antibodies were detected in 8 (2.4%) of 335 outpatients with available sera. Phylogenetic analyses revealed that this virus was clearly separated from previously reported New and Old World mammarenaviruses. Under the co-speciation framework, the estimated divergence time of PPV was 77-88 million years ago (MYA), earlier than that of OW and NW mammarenaviruses (26-34 MYA).


Assuntos
Arenaviridae , Lagomorpha , Animais , Humanos , Camundongos , Arenaviridae/genética , Filogenia , Estudos Retrospectivos , Tibet , Animais Selvagens
13.
Adv Exp Med Biol ; 1407: 279-297, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36920703

RESUMO

Mammarenaviruses are classified into New World arenaviruses (NW) and Old World arenaviruses (OW). The OW arenaviruses include the first discovered mammarenavirus-lymphocytic choriomeningitis virus (LCMV) and the highly lethal Lassa virus (LASV). Mammarenaviruses are transmitted to human by rodents, resulting in severe acute infections and hemorrhagic fever. Pseudotyped viruses have been widely used as a tool in the study of mammarenaviruses. HIV-1, SIV, FIV-based lentiviral vectors, VSV-based vectors, MLV-based vectors, and reverse genetic approaches have been applied in the construction of pseudotyped mammarenaviruses. Pseudotyped mammarenaviruses are commonly used in receptor research, neutralizing antibody detection, inhibitor screening, viral virulence studies, functional analysis of N-linked glycans, and studies of viral infection, endocytosis, and fusion mechanisms.


Assuntos
Arenaviridae , Arenavirus do Novo Mundo , Humanos , Arenaviridae/genética , Pseudotipagem Viral , Vírus da Coriomeningite Linfocítica/genética , Arenavirus do Novo Mundo/genética , Vírus Lassa/genética
14.
Virology ; 581: 116-127, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36958216

RESUMO

Mastomys natalensis-borne mammarenaviruses appear specific to subspecific M. natalensis taxa rather than to the whole species. Yet mammarenaviruses carried by M. natalensis are known to spill over and jump hosts in northern sub-Saharan Africa. Phylogeographic studies increasingly show that, like M. natalensis, small mammals in sub-Saharan Africa are often genetically structured into several subspecific taxa. Other mammarenaviruses may thus also form virus-subspecific host taxon associations. To investigate this, and if mammarenaviruses carried by M. natalensis in southern Africa are less prone to spill-over, we screened 1225 non-M. natalensis samples from Tanzania where many small mammal taxa meet. We found mammarenavirus RNA in 6 samples. Genetic/genomic characterisation confirmed they were not spill-over from M. natalensis. We detected host jumps among rodent tribe members and an association between mammarenaviruses and subspecific taxa of Mus minutoides and Grammomys surdaster, indicating host genetic structure may be crucial to understand virus distribution and host specificity.


Assuntos
Arenaviridae , Doenças dos Roedores , Animais , Arenaviridae/genética , Especificidade de Hospedeiro , Murinae , Filogeografia , Tanzânia
15.
Curr Top Microbiol Immunol ; 439: 265-303, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36592249

RESUMO

Members of the family Arenaviridae are classified into four genera: Antennavirus, Hartmanivirus, Mammarenavirus, and Reptarenavirus. Reptarenaviruses and hartmaniviruses infect (captive) snakes and have been shown to cause boid inclusion body disease (BIBD). Antennaviruses have genomes consisting of 3, rather than 2, segments, and were discovered in actinopterygian fish by next-generation sequencing but no biological isolate has been reported yet. The hosts of mammarenaviruses are mainly rodents and infections are generally asymptomatic. Current knowledge about the biology of reptarenaviruses, hartmaniviruses, and antennaviruses is very limited and their zoonotic potential is unknown. In contrast, some mammarenaviruses are associated with zoonotic events that pose a threat to human health. This review will focus on mammarenavirus genetic diversity and its biological implications. Some mammarenaviruses including lymphocytic choriomeningitis virus (LCMV) are excellent experimental model systems for the investigation of acute and persistent viral infections, whereas others including Lassa (LASV) and Junin (JUNV) viruses, the causative agents of Lassa fever (LF) and Argentine hemorrhagic fever (AHF), respectively, are important human pathogens. Mammarenaviruses were thought to have high degree of intra-and inter-species amino acid sequence identities, but recent evidence has revealed a high degree of mammarenavirus genetic diversity in the field. Moreover, closely related mammarenavirus can display dramatic phenotypic differences in vivo. These findings support a role of genetic variability in mammarenavirus adaptability and pathogenesis. Here, we will review the molecular biology of mammarenaviruses, phylogeny, and evolution, as well as the quasispecies dynamics of mammarenavirus populations and their biological implications.


Assuntos
Arenaviridae , Animais , Humanos , Arenaviridae/genética , Arenaviridae/metabolismo , Roedores , Variação Genética
16.
Microb Pathog ; 172: 105793, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36165863

RESUMO

Mammarena viruses are emerging pathogenic agents and cause hemorrhagic fevers in humans. These viruses accomplish host immune system evasion to replicate and spread in the host. There are only few available therapeutic options developed for Mammarena Virus (also called MMV). Currently, only a single candidate vaccine called Candid#1 is available against Junin virus. Similarly, the effective treatment Ribavirin is used only in Lassa fever treatments. Herein, immune-informatics pipeline has been used to annotate whole proteome of the seven human infecting Mammarena strains. The extensive immune based analysis reveals specie specific epitopes with a crucial role in immune response induction. This was achieved by construction of immunogenic epitopes (CTL "Cytotoxic T-Lymphocytes", HTL "Helper T-Lymphocytes", and B cell "B-Lymphocytes") based vaccine designs against seven different Mammarena virus species. Furthermore, validation of the vaccine constructs through exploring physiochemical properties was performed to confirm experimental feasibility. Additionally, in-silico cloning and receptor based immune simulation was performed to ensure induction of primary and secondary immune response. This was confirmed through expression of immune factors such as IL, cytokines, and antibodies. The current study provides with novel vaccine designs which needs further demonstrations through potential processing against MMVs. Future studies may be directed towards advanced evaluations to determine the efficacy and safety of the designed vaccines through further experimental procedures.


Assuntos
Arenaviridae , Vacinas Virais , Humanos , Vacinologia/métodos , Arenaviridae/genética , Epitopos de Linfócito B , Epitopos de Linfócito T , Proteoma , Ribavirina , Vacinas de Subunidades , Citocinas , Simulação de Acoplamento Molecular , Biologia Computacional
17.
Viruses ; 14(9)2022 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-36146676

RESUMO

Highly pathogenic Arenaviruses, like the Lassa Virus (LASV), pose a serious public health threat in affected countries. Research and development of vaccines and therapeutics are urgently needed but hampered by the necessity to handle these pathogens under biosafety level 4 conditions. These containment restrictions make large-scale screens of antiviral compounds difficult. Therefore, the Mopeia virus (MOPV), closely related to LASV, is often used as an apathogenic surrogate virus. We established for the first time trisegmented MOPVs (r3MOPV) with duplicated S segments, in which one of the viral genes was replaced by the reporter genes ZsGreen (ZsG) or Renilla Luciferase (Rluc), respectively. In vitro characterization of the two trisegmented viruses (r3MOPV ZsG/Rluc and r3MOPV Rluc/ZsG), showed comparable growth behavior to the wild type virus and the expression of the reporter genes correlated well with viral titer. We used the reporter viruses in a proof-of-principle in vitro study to evaluate the antiviral activity of two well characterized drugs. IC50 values obtained by Rluc measurement were similar to those obtained by virus titers. ZsG expression was also suitable to evaluate antiviral effects. The trisegmented MOPVs described here provide a versatile and valuable basis for rapid high throughput screening of broadly reactive antiviral compounds against arenaviruses under BSL-2 conditions.


Assuntos
Arenaviridae , Orthopoxvirus , Antivirais/farmacologia , Arenaviridae/genética , Genes Reporter , Vírus Lassa , Luciferases de Renilla/genética , Orthopoxvirus/genética , Pesquisa
18.
Microbiol Spectr ; 10(5): e0170522, 2022 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-36094085

RESUMO

Reptarenaviruses cause boid inclusion body disease (BIBD), a potentially fatal disease, occurring in captive constrictor snakes boas and pythons worldwide. Classical BIBD, characterized by the formation of pathognomonic cytoplasmic inclusion bodies (IBs), occurs mainly in boas, whereas in pythons, for example, reptarenavirus infection most often manifests as central nervous system signs with limited IB formation. The natural hosts of reptarenaviruses are unknown, although free-ranging/wild constrictor snakes are among the suspects. Here, we report BIBD with reptarenavirus infection in indigenous captive and wild boid snakes in Costa Rica using histology, immunohistology, transmission electron microscopy, and next-generation sequencing (NGS). The snakes studied represented diagnostic postmortem cases of captive and wild-caught snakes since 1989. The results from NGS on archival paraffin blocks confirm that reptarenaviruses were already present in wild boa constrictors in Costa Rica in the 1980s. Continuous sequences that were de novo assembled from the low-quality RNA obtained from paraffin-embedded tissue allowed the identification of a distinct pair of reptarenavirus S and L segments in all studied animals; in most cases, reference assembly could recover almost complete segments. Sampling of three prospective cases in 2018 allowed an examination of fresh blood or tissues and resulted in the identification of additional reptarenavirus segments and hartmanivirus coinfection. Our results show that BIBD is not only a disease of captive snakes but also occurs in indigenous wild constrictor snakes in Costa Rica, suggesting boa constrictors to play a role in natural reptarenavirus circulation. IMPORTANCE The literature describes cases of boid inclusion body disease (BIBD) in captive snakes since the 1970s, and in the 2010s, others and ourselves identified reptarenaviruses as the causative agent. BIBD affects captive snakes globally, but the origin and the natural host of reptarenaviruses remain unknown. In this report, we show BIBD and reptarenavirus infections in two native Costa Rican constrictor snake species, and by studying archival samples, we show that both the viruses and the disease have been present in free-ranging/wild snakes in Costa Rica at least since the 1980s. The diagnosis of BIBD in wild boa constrictors suggests that this species plays a role in the circulation of reptarenaviruses. Additional sample collection and analysis would help to clarify this role further and the possibility of, e.g., vector transmission from an arthropod host.


Assuntos
Infecções por Arenaviridae , Arenaviridae , Boidae , Doenças Transmissíveis , Animais , Boidae/genética , Infecções por Arenaviridae/veterinária , Parafina , Arenaviridae/genética , Corpos de Inclusão , RNA
19.
Microbiol Spectr ; 10(4): e0158522, 2022 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-35862992

RESUMO

Mammarenaviruses establish a persistent infection in their rodent and bat hosts, and the evidence suggests that reptarenaviruses and hartmaniviruses found in captive snakes act similarly. In snakes, reptarenaviruses cause boid inclusion body disease (BIBD), which is often associated with secondary infections. Snakes with BIBD usually carry more than a single pair of reptarenavirus S and L segments and occasionally demonstrate hartmanivirus coinfection. Here, we reported the generation of cell lines persistently infected with a single or two reptarenavirus(es) and a cell line with persistent reptarenavirus-hartmanivirus coinfection. By RT-PCR we demonstrated that the amount of viral RNA within the persistently infected cells remains at levels similar to those observed following initial infection. Using antibodies against the glycoproteins (GPs) and nucleoprotein (NP) of reptarenaviruses, we studied the levels of viral protein in cells passaged 10 times after the original inoculation and observed that the expression of GPs declines dramatically during persistent infection, unlike the expression of NP. Immunofluorescence (IF) staining served to demonstrate differences in the distribution of NP within the persistently infected compared to freshly infected cells. IF staining of cells inoculated with the viruses secreted from the persistently infected cell lines produced similar NP staining compared to cells infected with a traditionally passaged virus, suggesting that the altered NP expression pattern of persistently infected cells does not relate to changes in the virus. The cell cultures described herein can serve as tools for studying the coinfection and superinfection interplay between reptarenaviruses and studying the BIBD pathogenesis mechanisms. IMPORTANCE Mammarenaviruses cause a persistent infection in their natural rodent and bat hosts. Reptarenaviruses cause boid inclusion body disease (BIBD) in constrictor snakes, but it is unclear whether snakes are the natural host of these viruses. In this study, we showed that reptarenaviruses established a persistent infection in cultured Boa constrictor cells and that the persistently infected cells continued to produce infectious virus. Our results showed that persistent infection results from subsequent passaging of cells inoculated with a single reptarenavirus, two reptarenaviruses, or even when inoculating the cells with reptarenavirus and hartmanivirus (another arenavirus genus). The results further suggested that coinfection would not result in overt competition between the different reptarenaviruses, thus helping to explain the frequent reptarenavirus coinfections in snakes with BIBD. The established cell culture models of persistent infection could help to elucidate the role of coinfection and superinfection and potential immunosuppression as the pathogenic mechanisms behind BIBD.


Assuntos
Arenaviridae , Boidae , Quirópteros , Coinfecção , Superinfecção , Animais , Arenaviridae/genética , Linhagem Celular
20.
Viruses ; 14(7)2022 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-35891543

RESUMO

Replication-competent reporter-expressing viruses are crucial tools in molecular virology with applications that range from antiviral screening to live-cell imaging of protein spatiotemporal dynamics. However, there is currently little information available regarding viable strategies to develop reporter-expressing arenaviruses. To address this, we used Tacaribe virus (TCRV), an apathogenic BSL2 arenavirus, to assess the feasibility of different reporter expression approaches. We first generated trisegmented TCRV viruses with either the glycoprotein (GP) or nucleoprotein (NP) replaced by a reporter (GFP, mCherry, or nanoluciferase). These viruses were all viable, but showed marked differences in brightness and attenuation. Next, we generated terminal fusions with each of the TCRV proteins (i.e., NP, GP, polymerase (L), matrix protein (Z)) either with or without a T2A self-cleavage site. We tested both the function of the reporter-fused proteins alone, and the viability of corresponding recombinant TCRVs. We successfully rescued viruses with both direct and cleavable reporter fusions at the C-terminus of Z, as well as cleavable N-terminal fusions with NP. These viruses all displayed detectable reporter activity, but were also moderately attenuated. Finally, reporter proteins were inserted into a flexible hinge region within L. These viruses were also viable and showed moderate attenuation; however, reporter expression was only detectable for the luminescent virus. These strategies provide an exciting range of new tools for research into the molecular biology of TCRV that can likely also be adapted to other arenaviruses.


Assuntos
Arenaviridae , Arenavirus , Arenavirus do Novo Mundo , Arenaviridae/genética , Arenaviridae/metabolismo , Arenavirus/genética , Arenavirus do Novo Mundo/genética , Nucleoproteínas/genética , Nucleoproteínas/metabolismo , Replicação Viral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...